
The Stump Window Manager

Shawn Betts

Copyright c© 2000-2008 Shawn Betts

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “Copying” and
“GNU General Public License” are included exactly as in the original, and provided that the
entire resulting derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the Free Software Foundation.

1

1 Introduction

StumpWM is an X11 window manager written entirely in Common Lisp. Its user interface
goals are similar to ratpoison’s but with an emphasis on customizability, completeness, and
cushiness.

1.1 Starting StumpWM

There are a number of ways to start StumpWM but the most straight forward method is
as follows. This assumes you have a copy of the StumpWM source code and are using the
‘SBCL’ Common Lisp environment.

1. Install the prerequisites and build StumpWM as described in README. This should give
you a stumpwm executable.

2. In your ~/.xinitrc file include the line /path/to/stumpwm. Remember to replace
‘/path/to/’ with the actual path.

3. Finally, start X windows with startx. Cross your fingers. You should see a ‘Welcome
To the Stump Window Manager’ message pop up in the upper, right corner. At this
point, you have successfully started StumpWM.

1.2 Basic Usage

Once you have StumpWM up and running, the first thing you might want to do is start
emacs. Type C-t e, or in other words Control + t followed by e. Now perhaps you want
an xterm. Type C-t c. Now you have some programs running.

To see a list of windows StumpWM is managing, type C-t w. The highlighted window is
the one you’re looking at right now. It’s the focused window.

All of StumpWM’s keys are bound to named commands, which can be executed not only
by keys but also from the input bar. Type C-t ; to open a command prompt. Now type
time and press return. Note, time can also be called by typing C-t a. Throughout this
manual you’ll find definitions for commands, functions, and variables. Any command you
see in this manual can be executed from the input bar or bound to a key.

At this point you probably want to switch back from your new xterm to emacs. Type
C-t C-t. This runs the other command. Type it again and you’re back to xterm.

Perhaps you’d like to see emacs and xterm side-by-side. Type C-t s. You have now split
the screen into 2 frames. For more information see Chapter 6 [Frames], page 21. To switch
to the empty frame type C-t TAB. Now let’s pull the xterm window into this empty frame.
Type C-t w for a window listing. Find the xterm window. See the number beside it? Type
C-t followed by xterm’s window number.

Another common activity is browsing the interwebs. Type C-t !. The input bar pops up
again. You can now run a shell command. Let’s start a web browser: type firefox into the
input bar and press return.

Unfortunately, firefox probably isn’t wide enough because it’s in one of the frames.
Type C-t Q to remove all frames but the current one and resize it to fit the screen.

For a full list of key bindings, see Section 2.1 [List of Default Keybindings], page 3.

2 StumpWM Manual

1.3 Interacting with the Lisp process

Since StumpWM is a Lisp program, there is a way for you to evaluate Lisp code directly, on
the same Lisp process that StumpWM is running on. Type C-t : and an input box will
appear. Then type some Lisp expression.

When you call eval this way, you will be in the STUMPWM-USER package, which
imports all the exported symbols from the main STUMPWM package.

mode-line-border-width

Reads the value of *mode-line-border-width*.

(setf *mode-line-border-width* 3)

Sets the variable *mode-line-border-width* to 3.

(set-prefix-key (kbd "C-M-H-s-z"))

Calls the set-prefix-key function (and sets a new keyboard prefix)

1.4 Contact the StumpWM developers

The StumpWM home page is http://stumpwm.nongnu.org/.

You can reach Shawn Betts at sabetts at vcn.bc.ca.

The StumpWM mailing list is stumpwm-devel@nongnu.org which you can subscribe to
at http://mail.nongnu.org/mailman/listinfo/stumpwm-devel. Posting is restricted to
subscribers to keep spam out of the archives.

The StumpWM IRC channel can be found on Freenode at #stumpwm (irc://irc.
freenode.net/#stumpwm).

http://stumpwm.nongnu.org/
mailto:sabetts at vcn.bc.ca
mailto:stumpwm-devel@nongnu.org
http://mail.nongnu.org/mailman/listinfo/stumpwm-devel
irc://irc.freenode.net/#stumpwm
irc://irc.freenode.net/#stumpwm

3

2 Key Bindings

StumpWM is controlled entirely by keystrokes and Lisp commands. It mimics GNU Screen’s
keyboard handling. StumpWM’s default prefix key is C-t.

2.1 List of Default Keybindings

The following is a list of keybindings.

C-t d Select the window with the corresponding digit d

C-t C-d Pull the window with the corresponding digit d into the current frame

C-t n

C-t C-n

C-t Space Go to the next window in the window list

C-t p

C-t C-p Go to the previous window in the window list

C-t ’ Go to a window by name

C-t " Select a window from a list and focus the window.

C-t C-g Abort the current command. This is useful if you accidentally hit C-t

C-t w List all the windows

C-t i Display information about the current window.

C-t f Select a frame by number

C-t s Split current frame vertically

C-t S Split current frame horizontally

C-t k

C-t C-k Sends a kill message to the current frame and the running program.

C-t K Kills the current frame and running program; like a kill -9.

C-t c

C-t C-c Run an X terminal; by default xterm

C-t e

C-t C-e Run Emacs or raise it if it is already running.

C-t t Sends a C-t to the frame; this is useful for applications like Firefox which make
heavy use of C-t (in Firefox’s case, for opening a new tab). This is similar to
how GNU screen uses C-a a.

C-t w

C-t C-w Prints out a list of the windows, their number, and their name.

C-t b

C-t C-b Banish the mouse point to the lower right corner of the screen.

C-t a

C-t C-a Display the current time and date, much like the Unix command date.

4 StumpWM Manual

C-t C-t Switch to the last window to have focus in the current frame.

C-t ! Prompt for a shell command to run via /bin/sh. All output is discarded.

C-t R If the screen is split into multiple frames, one split will be undone. If there is
only one split, the effect will be the same as C-t Q.

C-t o

C-t TAB If the screen is split into multiple frames, focus shifts to the next frame, where
it cycles to the right and then down; analogous to C-x o in Emacs.

C-t F Display “Current Frame” in the frame which has focus.

C-t ; Opens the input box. StumpWM commands can be run from here, and the
input history moved through.

C-t : Opens the input box, but all things typed in here will be sent to the Common
Lisp interpreter where they will be ran as Lisp programs; thus, input should be
valid Common Lisp.

C-t C-h

C-t ? The help.

C-t - Hide all frames and show the root window.

C-t Q Removes all splits and maximizes the frame with focus.

C-t Up

C-t Down

C-t Left

C-t Right Shift focus to an adjacent frame in the specified direction. C-t Up will shift
focus up, if possible, C-t Down will shift downwards, etc.

C-t v Prints out the version of the running StumpWM.

C-t # Toggle the mark on the current window

C-t m

C-t C-m Display the last message. Hitting this keybinding again displays the message
before that, and so on.

C-t l

C-t C-l redisplay the current window and force it to take up the entire frame.

C-t G Display all groups and windows in each group. For more information see
Chapter 8 [Groups], page 27.

C-t Fn Jump to the corresponding group n. C-t F1 jumps to group 1 and so on.

C-t g g Show the list of groups.

C-t g c Create a new group.

C-t g n

C-t g C-n

C-t g SPC

C-t g C-SPC

Go to the next group in the list.

Chapter 2: Key Bindings 5

C-t g N Go to the next group in the list and bring the current window along.

C-t g p

C-t g C-p Go to the previous group in the list.

C-t g P Go to the previous group in the list and bring the current window along.

C-t g ’ Select a group by name or by number.

C-t g " Select a group from a list and switch to it.

C-t g m Move the current window to the specified group.

C-t g k Kill the current group. All windows are merged into the next group.

C-t g A

C-t g r Change the current group’s name.

C-t g d Go to the group with digit d. C-t g 1 jumps to group 1 and so on.

C-t + Make frames the same height or width in the current frame’s subtree.

C-t h k Describe the specified key binding.

C-t h f Describe the specified function.

C-t h v Describe the specified variable.

C-t h w List all key sequences that are bound to the specified command

C-t h c Describe the specified command.

2.2 Binding Keys

[Function]define-key map key command
Add a keybinding mapping for the key, key, to the command, command, in the
specified keymap. If command is nil, remove an exising binding. For example,

(stumpwm:define-key stumpwm:*root-map* (stumpwm:kbd "C-z") "echo Zzzzz...")

Now when you type C-t C-z, you’ll see the text “Zzzzz...” pop up.

[Function]undefine-key map key
Clear the key binding in the specified keybinding.

[Function]kbd keys
This compiles a key string into a key structure used by ‘define-key’, ‘undefine-key’,
‘set-prefix-key’ and others.

[Command]set-prefix-key key
Change the stumpwm prefix key to KEY.

(stumpwm:set-prefix-key (stumpwm:kbd "C-M-H-s-z"))

This will change the prefix key to Control + Meta + Hyper + Super + the z key. By
most standards, a terrible prefix key but it makes a great example.

6 StumpWM Manual

[Function]make-sparse-keymap
Create an empty keymap. If you want to create a new list of bindings in the key
binding tree, this is where you start. To hang frame related bindings off C-t C-f one
might use the following code:

(defvar *my-frame-bindings*

(let ((m (stumpwm:make-sparse-keymap)))

(stumpwm:define-key m (stumpwm:kbd "f") "curframe")

(stumpwm:define-key m (stumpwm:kbd "M-b") "move-focus left")

m ; NOTE: this is important

))

(stumpwm:define-key stumpwm:*root-map* (stumpwm:kbd "C-f") ’*my-frame-bindings*)

[Variable]*root-map*
This is the keymap by default bound to C-t. It is known as the prefix map.

[Variable]*top-map*
The top level key map. This is where you’ll find the binding for the prefix map.

[Variable]*groups-map*
The keymap that group related key bindings sit on. It is bound to C-t g by default.

[Command]bind key command
Hang a key binding off the escape key.

2.3 Modifiers

Many users have had some difficulty with setting up modifiers for StumpWM keybindings.
This is caused by a combination of how StumpWM handles modifiers and the default
modifiers list for many users’ X servers.

• My “Super” key doesn’t work!

This is most likely caused by having the Hyper and Super keys listed as the same
modifier in the modifier list.

$ xmodmap

xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_L (0x32), Shift_R (0x3e)

lock Caps_Lock (0x42)

control Control_L (0x25), Control_R (0x6d)

mod1 Alt_L (0x40), Alt_R (0x71), Meta_L (0x9c)

mod2 Num_Lock (0x4d)

mod3

mod4 Super_L (0x7f), Hyper_L (0x80)

mod5 Mode_switch (0x5d), ISO_Level3_Shift (0x7c)

The problem is in the line beginning with “mod4”. The way to set up the modifier list
correctly is to have just the Super key as the mod4 modifier. The following xmodmap

commands will do just that.

clear out the mod4 modifier

Chapter 2: Key Bindings 7

$ xmodmap -e ’clear mod4’

$ xmodmap

xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_L (0x32), Shift_R (0x3e)

lock Caps_Lock (0x42)

control Control_L (0x25), Control_R (0x6d)

mod1 Alt_L (0x40), Alt_R (0x71), Meta_L (0x9c)

mod2 Num_Lock (0x4d)

mod3

mod4

mod5 Mode_switch (0x5d), ISO_Level3_Shift (0x7c)

add Super as a mod4 modifier

$ xmodmap -e ’add mod4 = Super_L’

$ xmodmap

xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_L (0x32), Shift_R (0x3e)

lock Caps_Lock (0x42)

control Control_L (0x25), Control_R (0x6d)

mod1 Alt_L (0x40), Alt_R (0x71), Meta_L (0x9c)

mod2 Num_Lock (0x4d)

mod3

mod4 Super_L (0x73), Super_L (0x7f)

mod5 Mode_switch (0x5d), ISO_Level3_Shift (0x7c)

You can automate this by storing the commands in a file and calling xmodmap when
you start your X session.

$ cat ~/.Xmodmap

clear mod4

add mod4 = Super_L

If you use startx, modify your ~/.xsession or ~/.xinitrc file.

$ cat ~/.xsession

#!/bin/sh

xmodmap ~/.Xmodmap

exec /usr/bin/stumpwm

If you use a graphical login manager (GDM, KDM, etc.), your ~/.Xmodmap file should
be fed to xmodmap when you log in. FIXME: verify this.

• Handling Meta and Alt: when do I use M- and A-?

If you have no Meta keys defined (see the output of the xmodmap command), then
StumpWM will treat the M- prefix in keybindings to mean Alt. However, if there are
Meta keys defined, then the M- prefix refers to them, and the A- prefix refers to Alt.

8 StumpWM Manual

Most users will simply use M- to refer to their Alt keys. However, users that define
separate Meta and Alt keys will use M- to refer to the former, and A- to refer to the
latter.

• How can I set up a Hyper key and use it with StumpWM?

To set up a Hyper key, you need to do two things: bind a physical key to be a Hyper
key, and add that key to the modifiers list.

The following example shows how to bind the control key at the bottom-left of most
keyboards to be Hyper. This is useful if you’ve made Caps Lock into a control key, and
have no use for the bottom-left key.

$ xmodmap -e ’keycode 37 = Hyper_L’

$ xmodmap -e ’clear mod5’

$ xmodmap -e ’add mod5 = Hyper_L’

To use a different key for Hyper, replace the keycode “37” above. Use the xev program
to see the keycode that any physical key has. Refer to the section above on setting up
the Super key to see how to automate setting the Hyper key when you start X.

Now you can use H- as a prefix in StumpWM bindings.

(define-key *top-map* (kbd "H-RET") "fullscreen")

(define-key *top-map* (kbd "H-Left") "gprev")

(define-key *top-map* (kbd "H-Right") "gnext")

(define-key *top-map* (kbd "H-TAB") "other")

Since essentially no programs have Hyper bindings, you can safely bind commands to
the *top-map*.

9

3 Commands

If you’ve used emacs before you’ll find commands and functions familiar. Commands are
functions that can be bound to keys and executed interactively from StumpWM’s input bar.
A command expects a certain number of arguments and any that are not supplied will be
prompted for.

FIXME: actually write some docs here

11

4 Message and Input Bar

[Command]echo string
Display string in the message bar.

[Command]colon &optional initial-input
Read a command from the user. initial-text is optional. When supplied, the text will
appear in the prompt.

4.1 Customizing The Bar

The bar’s appearance and behavior can be modified with the following functions and
variables.

[Function]set-fg-color color
Set the foreground color for the message bar and input bar. color can be any color
recognized by X.

[Function]set-bg-color color
Set the background color for the message bar and input bar. color can be any color
recognized by X.

[Function]set-border-color color
Set the border color for the message bar and input bar. color can be any color
recognized by X.

[Function]set-msg-border-width width
Set the border width for the message bar and input bar.

[Function]set-font font
Set the font for the message bar and input bar.

[Variable]*message-window-padding*
The number of pixels that pad the text in the message window.

[Variable]*message-window-gravity*
This variable controls where the message window appears. The follow are valid values.

:top-left

:top-right

:bottom-left
:bottom-right
:center

[Variable]*timeout-wait*
Specifies, in seconds, how long a message will appear for. This must be an integer.

12 StumpWM Manual

[Variable]*input-window-gravity*
This variable controls where the input window appears. The follow are valid values.

:top-left

:top-right

:bottom-left
:bottom-right
:center

4.2 Using The Input Bar

The following is a list of keybindings for the Input Bar. Users of Emacs will recognize them.

DEL Delete the character before point (delete-backward-char).

M-DEL Kill back to the beginning of the previous word (backward-kill-word).

C-d

Delete Delete the character after point (delete-forward-char).

M-d Kill forward to the end of the next word (forward-kill-word).

C-f

Right Move forward one character (forward-char).

M-f Move forward one word (forward-word).

C-b

Left Move backward one character (backward-char).

M-b Move backward one word (backward-word).

C-a

Home Move to the beginning of the current line (move-beginning-of-line).

C-e

End Move to the end of the current line (move-end-of-line).

C-k Kill to the end of the line (kill-line).

C-u Kill to the beginning of the line (kill-to-beginning), the same as C-a C-k.

C-p

Up Move to the next earlier entry saved in the command history (history-back).

C-n

Down Move to the next later entry saved in the command history (history-forward).

RET Submit the entered command (submit).

C-g Abort the current action by closing the Input Bar (abort).

C-y Paste text from clipboard into the Input Bar (yank-selection).

TAB Clockwise tab complete the current string, if possible. Press TAB again to cycle
through completions.

S-TAB Counter-clockwise tab complete the current string, if possible. Press S-TAB

again to cycle through completions.

Chapter 4: Message and Input Bar 13

4.3 Programming The Message Bar

[Function]echo-string screen msg
Display string in the message bar on screen. You almost always want to use message.

[Function]message fmt &rest args
run FMT and ARGS through ‘format’ and echo the result to the current screen.

[Variable]*input-history-ignore-duplicates*
Do not add a command to the input history if it’s already the first in the list.

[Command]copy-last-message
Copy the last message displayed into the X selection

4.4 Programming the Input Bar

New input behavior can be added to the input bar by creating editing functions and binding
them to keys in the *input-map* using define-key, just like other key bindings.

An input function takes 2 arguments: the input structure and the key pressed.

[Function]read-one-line screen prompt &key (initial-input) require-match
password

Read a line of input through stumpwm and return it. returns nil if the user aborted.

[Function]read-one-char screen
Read a single character from the user.

[Function]completing-read screen prompt completions &key (initial-input)
require-match

Read a line of input through stumpwm and return it with TAB completion. completions
can be a list, an fbound symbol, or a function. if its an fbound symbol or a function
then that function is passed the substring to complete on and is expected to return a
list of matches. If require-match argument is non-nil then the input must match with
an element of the completions.

[Function]input-insert-string input string
Insert string into the input at the current position. input must be of type input-line.
Input functions are passed this structure as their first argument.

[Function]input-insert-char input char
Insert char into the input at the current position. input must be of type input-line.
Input functions are passed this structure as their first argument.

[Variable]*input-map*
This is the keymap containing all input editing key bindings.

15

5 Windows

[Command]next
Go to the next window in the window list.

[Command]pull-hidden-next
Pull the next hidden window into the current frame.

[Command]prev
Go to the previous window in the window list.

[Command]pull-hidden-previous
Pull the next hidden window into the current frame.

[Command]delete-window &optional (window (current-window))
Delete a window. By default delete the current window. This is a request sent to the
window. The window’s client may decide not to grant the request or may not be able
to if it is unresponsive.

[Command]kill-window &optional (window (current-window))
Tell X to disconnect the client that owns the specified window. Default to the current
window. if delete-window didn’t work, try this.

[Command]echo-windows &optional (fmt *window-format*) (group
(current-group)) (windows (group-windows group)) Display a list of managed windows.
The optional argument fmt can be used to override the default window formatting.

[Command]other-window &optional (group (current-group))
Switch to the window last focused.

[Command]pull-hidden-other
Pull the last focused, hidden window into the current frame.

[Command]renumber nt &optional (group (current-group))
Change the current window’s number to the specified number. If another window is
using the number, then the windows swap numbers. Defaults to current group.

[Command]meta key
Send a fake key to the current window. key is a typical StumpWM key, like C-M-o.

[Command]select-window query
Switch to the first window that starts with query.

[Command]select-window-by-number num &optional (group (current-group))
Find the window with the given number and focus it in its frame.

[Command]title title
Override the current window’s title.

16 StumpWM Manual

[Command]windowlist &optional (fmt *window-format*)
Allow the user to Select a window from the list of windows and focus the selected
window. For information of menu bindings See Section 12.1 [Menus], page 39. The
optional argument fmt can be specified to override the default window formatting.

[Command]fullscreen
Toggle the fullscreen mode of the current widnow. Use this for clients with broken
(non-NETWM) fullscreen implemenations, such as any program using SDL.

[Command]info &optional (fmt *window-info-format*)
Display information about the current window.

[Command]refresh
Refresh current window without changing its size.

[Command]redisplay
Refresh current window by a pair of resizes, also make it occupy entire frame.

[Variable]*window-format*
This variable decides how the window list is formatted. It is a string with the following
formatting options:

%n Substitutes the windows number translated via *window-number-map*, if
there are more windows than *window-number-map* then will use the
window-number.

%s Substitute the window’s status. * means current window, + means last
window, and - means any other window.

%t Substitute the window’s name.

%c Substitute the window’s class.

%i Substitute the window’s resource ID.

%m Draw a # if the window is marked.

Note, a prefix number can be used to crop the argument to a specified size. For
instance, ‘%20t’ crops the window’s title to 20 characters.

[Variable]*window-name-source*
This variable controls what is used for the window’s name. The default is :title.

:title Use the window’s title given to it by its owner.

:class Use the window’s resource class.

:resource-name

Use the window’s resource name.

[Variable]*new-window-prefered-frame*
nil

Chapter 5: Windows 17

5.1 Window Marks

Windows can be marked. A marked window has a # beside it in the window list. Some
commands operate only on marked windows.

[Command]mark
Toggle the current window’s mark.

[Command]clear-window-marks &optional (group (current-group)) (windows
(group-windows group)) Clear all marks in the current group.

[Command]pull-marked
Pull all marked windows into the current frame and clear the marks.

5.2 Customizing Window Appearance

[Variable]*maxsize-border-width*
The width in pixels given to the borders of windows with maxsize or ratio hints.

[Variable]*transient-border-width*
The width in pixels given to the borders of transient or pop-up windows.

[Variable]*normal-border-width*
The width in pixels given to the borders of regular windows.

[Variable]*window-border-style*
This controls the appearance of the border around windows. valid values are:

:thick All space within the frame not used by the window is dedicated to the
border.

:thin Only the border width as controlled by *maxsize-border-width* *normal-
border-width* and *transient-border-width* is used as the border. The
rest is filled with the unfocus color.

:tight The same as :thin but the border surrounds the window and the wasted
space within the frame is not obscured, revealing the background.

:none Like :tight but no border is ever visible.

After changing this variable you may need to call sync-all-frame-windows to see the
change.

[Function]set-win-bg-color color
Set the background color of the window. The background color will only be visible for
windows with size increment hints such as ‘emacs’ and ‘xterm’.

[Function]set-focus-color color
Set the border color for focused windows. This is only used when there is more than
one frame.

[Function]set-unfocus-color color
Set the border color for windows without focus. This is only used when there is more
than one frame.

18 StumpWM Manual

[Function]set-float-focus-color color
Set the border color for focused windows in a float group.

[Function]set-float-unfocus-color color
Set the border color for windows without focus in a float group.

[Function]set-normal-gravity gravity
Set the default gravity for normal windows. Possible values are :center :top :left

:right :bottom :top-left :top-right :bottom-left and :bottom-right.

[Function]set-maxsize-gravity gravity
Set the default gravity for maxsize windows.

[Function]set-transient-gravity gravity
Set the default gravity for transient/pop-up windows.

[Command]gravity gravity
Set a window’s gravity within its frame. Gravity controls where the window will
appear in a frame if it is smaller that the frame. Possible values are:

center

top

right

bottom

left

top-right

top-left

bottom-right
bottom-left

5.3 Controlling Raise And Map Requests

It is sometimes handy to deny a window’s request to be focused. The following variables
determine such behavior.

A map request occurs when a new or withdrawn window requests to be mapped for the
first time.

A raise request occurs when a client asks the window manager to give an existing window
focus.

[Variable]*deny-map-request*
A list of window properties that stumpwm should deny matching windows’ requests
to become mapped for the first time.

[Variable]*deny-raise-request*
Exactly the same as *deny-map-request* but for raise requests.

Note that no denial message is displayed if the window is already visible.

Chapter 5: Windows 19

[Variable]*suppress-deny-messages*
For complete focus on the task at hand, set this to T and no raise/map denial messages
will be seen.

Some examples follow.

;; Deny the firefox window from taking focus when clicked upon.

(push ’(:class "gecko") stumpwm:*deny-raise-request*)

;; Deny all map requests

(setf stumpwm:*deny-map-request* t)

;; Deny transient raise requests

(push ’(:transient) stumpwm:*deny-map-request*)

;; Deny the all windows in the xterm class from taking focus.

(push ’(:class "Xterm") stumpwm:*deny-raise-request*)

5.4 Programming With Windows

[Macro]define-window-slot attr
Create a new window attribute and corresponding get/set functions.

[Function]window-send-string string &optional (window (current-window))
Send the string of characters to the current window as if they’d been typed.

[Variable]*default-window-name*
The name given to a window that does not supply its own name.

5.5 Rule Based Window Placement

[Macro]define-frame-preference target-group &rest frame-rules
Create a rule that matches windows and automatically places them in a specified
group and frame. Each frame rule is a lambda list:

(frame-number raise lock &key create restore dump-name class instance type role title)

frame-number
The frame number to send matching windows to

raise When non-nil, raise and focus the window in its frame

lock When this is nil, this rule will only match when the current group matches
target-group. When non-nil, this rule matches regardless of the group and
the window is sent to target-group. If lock and raise are both non-nil,
then stumpwm will jump to the specified group and focus the matched
window.

create When non-NIL the group is created and eventually restored when the
value of create is a group dump filename in *DATA-DIR*. Defaults to
NIL.

20 StumpWM Manual

restore When non-NIL the group is restored even if it already exists. This arg
should be set to the dump filename to use for forced restore. Defaults to
NIL

class The window’s class must match class.

instance The window’s instance/resource name must match instance.

type The window’s type must match type.

role The window’s role must match role.

title The window’s title must match title.

[Function]clear-window-placement-rules
Clear all window placement rules.

[Command]remember lock title
Make a generic placement rule for the current window. Might be too specific/not
specific enough!

[Command]forget
Forget the window placement rule that matches the current window.

[Command]dump-window-placement-rules file
Dump *window-placement-rules* to FILE.

[Command]restore-window-placement-rules file
Restore *window-placement-rules* from FILE.

21

6 Frames

Frames contain windows. All windows exist within a frame.

Those used to ratpoison will notice that this differs from ratpoison’s window pool, where
windows and frames are not so tightly connected.

[Command]pull-window-by-number n &optional (group (current-group))
Pull window N from another frame into the current frame and focus it.

[Command]hsplit &optional (ratio 1/2)
Split the current frame into 2 side-by-side frames.

[Command]vsplit &optional (ratio 1/2)
Split the current frame into 2 frames, one on top of the other.

[Command]remove-split &optional (group (current-group)) (frame
(tile-group-current-frame group)) Remove the specified frame in the specified group
(defaults to current group, current frame). Windows in the frame are migrated to the
frame taking up its space.

[Command]only
Delete all the frames but the current one and grow it to take up the entire head.

[Command]curframe
Display a window indicating which frame is focused.

[Command]fnext
Cycle through the frame tree to the next frame.

[Command]sibling
Jump to the frame’s sibling. If a frame is split into two frames, these two frames are
siblings.

[Command]fother
Jump to the last frame that had focus.

[Command]fselect frame-number
Display a number in the corner of each frame and let the user to select a frame by
number. If frame-number is specified, just jump to that frame.

[Command]resize width height
Resize the current frame by width and height pixels

[Command]balance-frames
Make frames the same height or width in the current frame’s subtree.

[Command]fclear
Clear the current frame.

22 StumpWM Manual

[Command]move-focus dir
Focus the frame adjacent to the current one in the specified direction. The following
are valid directions:

up

down

left

right

[Command]move-window dir
Just like move-focus except that the current is pulled along.

[Command]next-in-frame
Go to the next window in the current frame.

[Command]prev-in-frame
Go to the previous window in the current frame.

[Command]other-in-frame
Go to the last accessed window in the current frame.

[Command]echo-frame-windows &optional (fmt *window-format*)
Display a list of all the windows in the current frame.

[Command]exchange-direction dir &optional (win (current-window))
Exchange the current window (by default) with the top window of the frame in
specified direction.

up

down

left

right

[Variable]*min-frame-width*
The minimum width a frame can be. A frame will not shrink below this width.
Splitting will not affect frames if the new frame widths are less than this value.

[Variable]*min-frame-height*
The minimum height a frame can be. A frame will not shrink below this height.
Splitting will not affect frames if the new frame heights are less than this value.

[Variable]*new-frame-action*
When a new frame is created, this variable controls what is put in the new frame.
Valid values are

:empty The frame is left empty

:last-window

The last focused window that is not currently visible is placed in the frame.
This is the default.

Chapter 6: Frames 23

6.1 Interactively Resizing Frames

There is a mode called iresize that lets you interactively resize the current frame. To enter
the mode use the iresize command or type C-t r.

The following keybindings apply to the mode:

C-p

Up

k Shrink the frame vertically.

C-n

Down

j Expand the frame vertically.

C-f

Right

l Expand the frame horizontally.

C-b

Left

h Shrink the frame horizontally.

C-g

ESC Abort the interactive resize. NOTE: This currently doesn’t work.

RET Select the highlighted option.

[Command]iresize
Start the interactive resize mode. A new keymap specific to resizing the current frame
is loaded. Hit C-g, RET, or ESC to exit.

[Command]abort-iresize
Exit from the interactive resize mode.

[Command]exit-iresize
Exit from the interactive resize mode.

[Variable]*resize-increment*
Number of pixels to increment by when interactively resizing frames.

6.2 Frame Dumping

The configuration of frames and groups can be saved and restored using the following
commands.

[Command]dump-desktop-to-file file
Dumps the frames of all groups of all screens to the named file

[Command]dump-group-to-file file
Dumps the frames of the current group of the current screen to the named file.

[Command]dump-screen-to-file file
Dumps the frames of all groups of the current screen to the named file

24 StumpWM Manual

[Command]restore-from-file file
Restores screen, groups, or frames from named file, depending on file’s contents.

[Command]place-existing-windows
Re-arrange existing windows according to placement rules.

25

7 The Mode Line

The mode line is a bar that runs across either the top or bottom of a head and is used to
display information. By default the mode line displays the list of windows, similar to the
output C-t w produces.

Alternatively, external panel applications such as the GNOME panel and KDE’s kicker
may be used. Simply starting one of these programs is enough to set it as the mode line
of the head it would like to be on (if the panel is Xinerama aware) or whichever head is
available. In order to avoid problems displaying menus, configure your panel application for
positioning at the top or bottom of the head rather than relying on *mode-line-position*

The mode line can be turned on and off with the mode-line command or the lisp function
stumpwm:toggle-mode-line. Each head has its own mode line. For example:

;; turn on/off the mode line for the current head only.

(stumpwm:toggle-mode-line (stumpwm:current-screen)

(stumpwm:current-head))

The mode line is updated after every StumpWM command.

To display the window list and the current date on the modeline, one might do the
following:

(setf stumpwm:*screen-mode-line-format*

(list "%w | "

’(:eval (stumpwm:run-shell-command "date" t))))

(stumpwm:run-shell-command "date" t) runs the command date and returns its out-
put as a string.

[Command]mode-line
A command to toggle the mode line visibility.

[Function]toggle-mode-line screen head &optional (format (quote
screen-mode-line-format))

Toggle the state of the mode line for the specified screen

[Variable]*screen-mode-line-format*
This variable describes what will be displayed on the modeline for each screen. Turn
it on with the function TOGGLE-MODE-LINE or the mode-line command.

It is a list where each element may be a string, a symbol, or a list.

For a symbol its value is used.

For a list of the form (:eval FORM) FORM is evaluated and the result is used as a
mode line element.

If it is a string the string is printed with the following formatting options:

%h List the number of the head the mode-line belongs to

%w List all windows in the current group windows using *window-format*

%W List all windows on the current head of the current group using *window-
format*

%g List the groups using *group-format*

26 StumpWM Manual

The following variables control the color, position, and size of the mode line.

[Variable]*mode-line-position*
Specifies where the mode line is displayed. Valid values are :top and :bottom.

[Variable]*mode-line-border-width* 1
nil

[Variable]*mode-line-pad-x*
nil

[Variable]*mode-line-pad-y*
nil

[Variable]*mode-line-background-color*
nil

[Variable]*mode-line-foreground-color*
nil

[Variable]*mode-line-border-color*
nil

[Variable]*mode-line-timeout*
The modeline updates after each command, when a new window appears or an existing
one disappears, and on a timer. This variable controls how many seconds elapse
between each update. If this variable is changed while the modeline is visible, you
must toggle the modeline to update timer.

27

8 Groups

Groups in StumpWM are more commonly known as virtual desktops or workspaces. Why
not create a new term for it?

[Command]gnew name
Create a new group with the specified name. The new group becomes the current
group. If name begins with a dot (“.”) the group new group will be created in the
hidden state. Hidden groups have group numbers less than one and are invisible to
from gprev, gnext, and, optionally, groups and vgroups commands.

[Command]gnew-float name
Create a floating window group with the specified name and switch to it.

[Command]gnewbg name
Create a new group but do not switch to it.

[Command]gnewbg-float name
Create a floating window group with the specified name, but do not switch to it.

[Command]gnext
Cycle to the next group in the group list.

[Command]gprev
Cycle to the previous group in the group list.

[Command]gnext-with-window
Cycle to the next group in the group list, taking the current window along.

[Command]gprev-with-window
Cycle to the previous group in the group list, taking the current window along.

[Command]gother
Go back to the last group.

[Command]gmerge from
Merge from into the current group. from is not deleted.

[Command]groups &optional (fmt *group-format*)
Display the list of groups with their number and name. *group-format* controls the
formatting. The optional argument fmt can be used to override the default group
formatting.

[Command]vgroups &optional gfmt wfmt
Like groups but also display the windows in each group. The optional arguments
gfmt and wfmt can be used to override the default group formatting and window
formatting, respectively.

[Command]gselect to-group
Select the first group that starts with substring. substring can also be a number, in
which case gselect selects the group with that number.

28 StumpWM Manual

[Command]gmove to-group
Move the current window to the specified group.

[Command]gkill
Kill the current group. All windows in the current group are migrated to the next
group.

[Command]grename name
Rename the current group.

[Command]grouplist &optional (fmt *group-format*)
Allow the user to select a group from a list, like windowlist but for groups

8.1 Customizing Groups

[Variable]*group-formatters*
An alist of characters and formatter functions. The character can be used as a format
character in *group-format*. When the character is encountered in the string, the
corresponding function is called with a group as an argument. The functions return
value is inserted into the string. If the return value isn’t a string it is converted to one
using prin1-to-string.

[Variable]*group-format*
The format string that decides what information will show up in the group listing.
The following format options are available:

%n Substitutes the group number translated via *group-number-map*, if
there are more windows than *group-number-map* then will use the
group-number.

%s The group’s status. Similar to a window’s status.

%t The group’s name.

[Function]current-group &optional (screen (current-screen))
Return the current group for the current screen, unless otherwise specified.

29

9 Screens

StumpWM handles multiple screens.

[Command]snext
Go to the next screen.

[Command]sprev
Go to the previous screen.

[Command]sother
Go to the last screen.

9.1 Xinerama

StumpWM will attempt to detect Xinerama heads at startup (and at no other time.) Heads
are logically contained by screens. In a dual-monitor Xinerama configuration, there will
be one screen with two heads. Non-rectangular layouts are supported (frames will not be
created in the ’dead zone’.) And message windows will be displayed on the current head–that
is, the head to which the currently focused frame belongs.

9.2 Programming With Screens

[Function]current-screen
Return the current screen.

[Function]screen-current-window screen
Return the current window on the specified screen

[Function]current-window
Return the current window on the current screen

[Variable]*screen-list*
The list of screens managed by stumpwm.

31

10 Interacting With Unix

[Command]run-shell-command cmd &optional collect-output-p
Run the specified shell command. If collect-output-p is T then run the command
synchonously and collect the output. Be careful. If the shell command doesn’t return,
it will hang StumpWM. In such a case, kill the shell command to resume StumpWM.

[Function]programs-in-path &optional full-path (path (split-string (getenv
PATH) :))

Return a list of programs in the path. if full-path is t then return the full path,
otherwise just return the filename. path is by default the PATH evironment variable
but can be specified. It should be a string containing each directory seperated by a
colon.

[Function]pathname-is-executable-p pathname
Return T if the pathname describes an executable file.

[Variable]*shell-program*
The shell program used by run-shell-command.

[Function]getenv var
Return the value of the environment variable.

[Function](setf getenv) val var
Set the value of the environment variable, var to val.

33

11 Interacting With X11

[Function]set-x-selection text
Set the X11 selection string to string.

[Function]get-x-selection &optional timeout
Return the x selection no matter what client own it.

35

12 Miscellaneous Commands

The following is a list of commands that don’t really fit in any other section.

[Command]emacs
Start emacs unless it is already running, in which case focus it.

[Command]banish &optional where
Warp the mouse the lower right corner of the current head.

[Command]ratwarp x y
Warp the mouse to the specified location.

[Command]ratrelwarp dx dy
Warp the mouse by the specified amount from its current position.

[Command]ratclick &optional (button 1)
Simulate a pointer button event at the current pointer location. Note: this function is
unlikely to work unless your X server and CLX implementation support XTEST.

[Command]echo-date
Display the date and time.

[Command]eval-line cmd
Evaluate the s-expression and display the result(s).

[Command]window-send-string string &optional (window (current-window))
Send the string of characters to the current window as if they’d been typed.

[Command]reload
Reload StumpWM using asdf.

[Command]loadrc
Reload the ~/.stumpwmrc file.

[Command]keyboard-quit

[Command]quit
Quit StumpWM.

[Command]restart-hard
Restart stumpwm. This is handy if a new stumpwm executable has been made and
you wish to replace the existing process with it.

Any run-time customizations will be lost after the restart.

[Command]restart-soft
Soft Restart StumpWM. The lisp process isn’t restarted. Instead, control jumps to
the very beginning of the stumpwm program. This differs from RESTART, which
restarts the unix process.

Since the process isn’t restarted, existing customizations remain after the restart.

36 StumpWM Manual

[Command]getsel
Echo the X selection.

[Command]putsel string
Stuff the string string into the X selection.

[Command]command-mode
Command mode allows you to type ratpoison commands without needing the C-t

prefix. Keys not bound in StumpWM will still get sent to the current window. To
exit command mode, type C-g.

[Command]copy-unhandled-error
When an unhandled error occurs, StumpWM restarts and attempts to continue.
Unhandled errors should be reported to the mailing list so they can be fixed. Use this
command to copy the unhandled error and backtrace to the X11 selection so you can
paste in your email when submitting the bug report.

[Command]commands
List all available commands.

[Command]lastmsg
Display the last message. If the previous command was lastmsg, then continue cycling
back through the message history.

[Command]list-window-properties
List all the properties of the current window and their values, like xprop.

[Function]run-commands &rest commands
Run each stumpwm command in sequence. This could be used if you’re used to
ratpoison’s rc file and you just want to run commands or don’t know lisp very well.
One might put the following in one’s rc file:

(stumpwm:run-commands

"escape C-z"

"exec firefox"

"split")

[Macro]defcommand name (&rest args) (&rest interactive-args) &body body
Create a command function and store its interactive hints in *command-hash*. The
local variable %interactivep% can be used to check if the command was called in-
teractively. If it is non-NIL then it was called from a keybinding or from the colon
command.

INTERACTIVE-ARGS is a list of the following form: ((TYPE PROMPT) (TYPE
PROMPT) ...)

each element in INTERACTIVE-ARGS declares the type and prompt for the com-
mand’s arguments.

TYPE can be one of the following:

:y-or-n A yes or no question returning T or NIL.

:variable A lisp variable

Chapter 12: Miscellaneous Commands 37

:function A lisp function

:command A stumpwm command as a string.

:key-seq A key sequence starting from *TOP-MAP*

:window-number
An existing window number

:number An integer number

:string A string

:key A single key chord

:window-name
An existing window’s name

:direction A direction symbol. One of :UP :DOWN :LEFT :RIGHT

:gravity A gravity symbol. One of :center :top :right :bottom :left :top-right
:top-left :bottom-right :bottom-left

:group An existing group

:frame A frame

:shell A shell command

:rest The rest of the input yes to be parsed.

:module An existing stumpwm module

Note that new argument types can be created with DEFINE-STUMPWM-TYPE.

PROMPT can be string. In this case, if the corresponding argument is missing from an
interactive call, stumpwm will use prompt for its value using PROMPT. If PROMPT
is missing or nil, then the argument is considered an optional interactive argument
and is not prompted for when missing.

Alternatively, instead of specifying nil for PROMPT or leaving it out, an element can
just be the argument type.

[Macro]define-stumpwm-type type (input prompt) &body body
Create a new type that can be used for command arguments. type can be any symbol.

When body is evaluated input is bound to the argument-line. It is passed to
argument-pop, argument-pop-rest, etc. prompt is the prompt that should be used
when prompting the user for the argument.

(define-stumpwm-type :symbol (input prompt)

(or (find-symbol (string-upcase

(or (argument-pop input)

;; Whitespace messes up find-symbol.

(string-trim " "

(completing-read (current-screen)

prompt

;; find all symbols in the

;; stumpwm package.

38 StumpWM Manual

(let (acc)

(do-symbols (s (find-package "STUMPWM"))

(push (string-downcase (symbol-name s)) acc))

acc)))

(throw ’error "Abort.")))

"STUMPWM")

(throw ’error "Symbol not in STUMPWM package")))

(defcommand "symbol" (sym) ((:symbol "Pick a symbol: "))

(message "~a" (with-output-to-string (s)

(describe sym s))))

This code creates a new type called :symbol which finds the symbol in the stumpwm
package. The command symbol uses it and then describes the symbol.

[Function]run-or-raise cmd props &optional (all-groups
run-or-raise-all-groups) (all-screens *run-or-raise-all-screens*)

Run the shell command, cmd, unless an existing window matches props. props is a
property list with the following keys:

:class Match the window’s class.

:instance

Match the window’s instance or resource-name.

:role Match the window’s WM_WINDOW_ROLE.

:title Match the window’s title.

By default, the global *run-or-raise-all-groups* decides whether to search all groups
or the current one for a running instance. all-groups overrides this default. Similarily
for *run-or-raise-all-screens* and all-screens.

[Function]run-or-pull cmd props &optional (all-groups
run-or-raise-all-groups) (all-screens *run-or-raise-all-screens*)

Similar to run-or-raise, but move the matching window to the current frame instead
of switching to the window.

[Variable]*run-or-raise-all-groups*
When this is T the run-or-raise function searches all groups for a running instance.
Set it to NIL to search only the current group.

[Variable]*run-or-raise-all-screens*
When this is T the run-or-raise function searches all screens for a running instance.
Set it to NIL to search only the current screen. If *run-or-raise-all-groups* is NIL this
variable has no effect.

[Function]restarts-menu err
Display a menu with the active restarts and let the user pick one. Error is the error
being recovered from. If the user aborts the menu, the error is re-signalled.

[Macro]with-restarts-menu &body body
Execute BODY. If an error occurs allow the user to pick a restart from a menu of
possible restarts. If a restart is not chosen, resignal the error.

Chapter 12: Miscellaneous Commands 39

[Variable]*startup-message*
This is the message StumpWM displays when it starts. Set it to NIL to suppress.

[Variable]*suppress-abort-messages*
Suppress abort message when non-nil.

[Variable]*default-package*
This is the package eval reads and executes in. You might want to set this to :stumpwm
if you find yourself using a lot of internal stumpwm symbols. Setting this variable
anywhere but in your rc file will have no effect.

[Macro]defprogram-shortcut name &key (command (string-downcase (string
name))) (props (quasiquote (quote (class #S(comma :expr
(string-capitalize command) :kind 0))))) (map *top-map*) (key (kbd
(concat H- (subseq command 0 1)))) (pullp nil) (pull-name (intern1
(concat (string name) -PULL))) (pull-key (kbd (concat H-M- (subseq
command 0 1))))

Define a command and key binding to run or raise a program. If pullp is set, also
define a command and key binding to run or pull the program.

[Variable]*initializing*
True when starting stumpwm. Use this variable in your rc file to run code that should
only be executed once, when stumpwm starts up and loads the rc file.

12.1 Menus

Some commands present the options in a menu. The following are the menu key bindings:

C-p

Up

k Highlight the previous menu option.

C-n

Down

j Highlight the next menu option.

C-g

ESC Abort the menu.

RET Select the highlighted option.

12.2 StumpWM’s Data Directory

If you want to store StumpWM data between sessions, the recommended method is to store
them in ~/.stumpwm.d/. StumpWM supplies some functions to make doing this easier.

[Variable]*data-dir*
The directory used by stumpwm to store data between sessions.

[Function]data-dir-file name &optional type
Return a pathname inside stumpwm’s data dir with the specified name and type

40 StumpWM Manual

[Macro]with-data-file (s file &rest keys &key (if-exists supersede)
&allow-other-keys) &body body

Open a file in StumpWM’s data directory. keyword arguments are sent directly to
OPEN. Note that IF-EXISTS defaults to :supersede, instead of :error.

12.3 Debugging StumpWM

[Variable]*debug-level*
Set this variable to a number > 0 to turn on debugging. The greater the number the
more debugging output.

[Variable]*debug-stream*
This is the stream debugging output is sent to. It defaults to *error-output*. It may
be more convenient for you to pipe debugging output directly to a file.

[Function]redirect-all-output file
Elect to redirect all output to the specified file. For instance, if you want everything
to go to ~/stumpwm.d/debug-output.txt you would do:

(redirect-all-output (data-dir-file "debug-output" "txt"))

12.4 Timers

StumpWM has a timer system similar to that of Emacs.

[Function]run-with-timer secs repeat function &rest args
Perform an action after a delay of SECS seconds. Repeat the action every REPEAT
seconds, if repeat is non-nil. SECS and REPEAT may be reals. The action is to call
FUNCTION with arguments ARGS.

[Function]cancel-timer timer
Remove TIMER from the list of active timers.

[Function]timer-p timer
Return T if TIMER is a timer structure.

12.5 Getting Help

[Command]describe-key keys
Either interactively type the key sequence or supply it as text. This command prints
the command bound to the specified key sequence.

[Command]describe-variable var
Print the online help associated with the specified variable.

[Command]describe-function fn
Print the online help associated with the specified function.

[Command]where-is cmd
Print the key sequences bound to the specified command.

[Command]modifiers
List the modifiers stumpwm recognizes and what MOD-X it thinks they’re on.

41

13 Colors

All text printed by stumpwm is run through a coloring engine before being displayed. All
color commands start with a ‘^’ (caret) character and apply to all text after it.

^0-9 A caret followed by a single digit number changes the foreground color to the
specified color. A ‘*’ can be used to specify the normal color. See the color
listing below.

^0-90-9 A caret followed by two digits sets the foreground and background color. The
first digit refers to the foreground color and the second digit to the background
color. A ‘*’ can be used in place of either digit to specify the normal color. See
the color listing below.

^B Turn on bright colors.

^b Turn off bright colors.

^n Use the normal background and foreground color.

^R Reverse the foreground and background colors.

^r Turn off reverse colors.

^[Push the current colors onto the color stack. The current colors remain un-
changed.

^] Pop the colors off the color stack.

^^ Print a regular caret.

The default colors are made to resemble the 16 VGA colors and are:

0 black

1 red

2 green

3 yellow

4 blue

5 magenta

6 cyan

7 white

There are only 8 colors by default but 10 available digits. The last two digits are left up
to the user. Section 13.1 [Behind The Scenes Look At Colors], page 42, for information on
customizing colors.

42 StumpWM Manual

13.1 Behind The Scenes Look At Colors

Color indexes are stored in *colors* as a list. The default list of colors leave 2 slots for the
user to choose. If you’d like to use ‘Papaya Whip’ and ‘Dark Golden Rod 3’ you might eval
the following:

(setf *colors* (append *colors*

(list "PapayaWhip"

"DarkGoldenRod3")))

(update-color-map (current-screen))

Of course, you can change all the colors if you like.

[Function]parse-color-string string
parse a color coded string into a list of strings and color codes

[Function]uncolorify string
Remove any color markup in STRING

[Variable]*colors*
Eight colors by default. You can redefine these to whatever you like and then call
(update-color-map).

[Function]update-color-map screen
Read *colors* and cache their pixel colors for use when rendering colored text.

43

14 Hooks

StumpWM exports a number of hooks you can use to add customizations; like hooks in
Emacs, you add to a hook with the add-hook function. for example:

(stumpwm:add-hook ’stumpwm:*new-window-hook* ’my-new-window-custos)

adds your my-new-window-custos function to the list of functions called when a new
window appears.

[Macro]add-hook hook fn
Add function to the hook hook-variable. For example, to display a message whenever
you switch frames:

(defun my-rad-fn (to-frame from-frame)

(stumpwm:message "Mustard!"))

(stumpmwm:add-hook stumpwm:*focus-frame-hook* ’my-rad-fn)

[Macro]remove-hook hook fn
Remove the specified function from the hook.

The following hooks are available:

[Hook]*new-window-hook*
A hook called whenever a window is added to the window list. This includes a
genuinely new window as well as bringing a withdrawn window back into the window
list.

[Hook]*destroy-window-hook*
A hook called whenever a window is destroyed or withdrawn.

[Hook]*focus-window-hook*
A hook called when a window is given focus. It is called with 2 arguments: the current
window and the last window (could be nil).

[Hook]*place-window-hook*
A hook called whenever a window is placed by rule. Arguments are window group
and frame

[Hook]*start-hook*
A hook called when stumpwm starts.

[Hook]*internal-loop-hook*
A hook called inside stumpwm’s inner loop.

[Hook]*focus-frame-hook*
A hook called when a frame is given focus. The hook functions are called with 2
arguments: the current frame and the last frame.

[Hook]*new-frame-hook*
A hook called when a new frame is created. the hook is called with the frame as an
argument.

44 StumpWM Manual

[Hook]*message-hook*
A hook called whenever stumpwm displays a message. The hook function is passed
any number of arguments. Each argument is a line of text.

[Hook]*top-level-error-hook*
Called when a top level error occurs. Note that this hook is run before the error is
dealt with according to *top-level-error-action*.

[Hook]*focus-group-hook*
A hook called whenever stumpwm switches groups. It is called with 2 arguments: the
current group and the last group.

[Hook]*key-press-hook*
A hook called whenever a key under *top-map* is pressed. It is called with 3 argument:
the key, the (possibly incomplete) key sequence it is a part of, and command value
bound to the key.

[Hook]*root-click-hook*
A hook called whenever there is a mouse click on the root window. Called with 4
arguments, the screen containing the root window, the button clicked, and the x and
y of the pointer.

[Hook]*mode-line-click-hook*
Called whenever the mode-line is clicked. It is called with 4 arguments, the mode-line,
the button clicked, and the x and y of the pointer.

[Hook]*urgent-window-hook*
A hook called whenever a window sets the property indicating that it demands the
user’s attention

[Hook]*event-processing-hook*
A hook called inside stumpwm’s inner loop, before the default event processing takes
place. This hook is run inside (with-event-queue ...).

45

15 Modules

StumpWM has a growing number of modules not loaded by default. All modules exist in
the contrib/ directory of StumpWM’s archive.

[Command]load-module name
Loads the contributed module with the given NAME.

47

16 Hacking

For those of you who have worked on Free Software projects before, this part should probably
be fairly intuitive.

16.1 Hacking: General Advice

1. Pay attention to file names and contents. If you’re making changes to mode-line related
code, don’t put it in core.lisp. If you’re introducing some completely new featureset,
consider putting all of the new code in a new file.

2. Does a command need to be user-visible (“interactive”) or is it just called by other
commands?

• If it’s not going to be user-visible, you can just use the familiar (defun foo ()

...) syntax.

• If you want the command to be used interactively, you use StumpWM’s defcommand
syntax, as in the examples below.

(defcommand test (foo bar)

((:string "How you’re going to prompt for variable foo: ")

(:number "How you want to prompt for variable bar: "))

"This command is a test"

(body...))

(defcommand test2 () ()

"This is also a test"

(body...))

(defcommand title (args) (interactive-args)

"Doc string"

(body...))

So basically, inside the first set of parentheses after the function name, you specify
what (if any) arguments will be passed to the command. The second set of
parentheses tells StumpWM how to get those arguments if they’re not explicitly
passed to the command. For example,

((:string "What do you want to do: "))

will read a string from the input the user provides. The quoted text is the prompt
the user will see. Of course, if you were to, say, call the command test, as defined
above, from another piece of code, it wouldn’t give the prompt as long as you fed
it arguments.

3. Note that all commands defined using the defcommand syntax are available both to
be called with C-t ; and from within other lisp programs, as though they had been
defun-ned (which, in fact, they have).

4. Any code that depends on external libraries or programs that some users might not
have installed should be placed in the contrib/ directory.

5. Don’t be afraid to submit your patches to the StumpWM mailing list! It may not
immediately make it into the official git repository, but individual users might find it

48 StumpWM Manual

useful and apply it to their own setup, or might be willing to offer suggestions on how
to improve the code.

6. Remember: StumpWM is designed to run on both clisp and on SBCL. If you must use
code specific to one or the other, at the very least warn people that it only works with
one lisp implementation. Better yet, figure out how to do it in the other distribution
and write a statement like this:

#+clisp

(your-clisp-code)

#+sbcl

(your-sbcl-code)

#to wrap the code for each lisp. Of course, the best option is to find a way to use the
same code for clisp and SBCL.

16.2 Hacking: Using git with StumpWM

For quite a while now, StumpWM has been using the git version control system for devel-
opment. If you’re one using one of the official releases or still using the now-obsolete CVS
version, you can get the bleeding-edge source code from the official git repository with a
single command:

$ git clone git@github.com:sabetts/stumpwm.git

After this, you’ll have a complete git repository, along with the complete revision history
since the switch. Feel free to play around; git has some important features that actually
make this safe!

Before we get to that stuff, though, you’re going to want to tell git about yourself so that
your information is included in your commits and patches. The very minimum you’re going
to want to do is:

$ git config --global user.name "Anne N. O’Nymous"

$ git config --global user.email "anonymous@foo.org"

Be sure to check out the manual for git-config–there are several options you might
want to set, such as enabling colorized output or changing the editor and pager you use
when making commits and viewing logs.

For the sake of argument, let’s say you want to make some major changes to both
user.lisp and core.lisp, add a file called DANGEROUS_EXPERIMENT_DO_NOT_USE_OR_

ELSE.lisp, and remove the manual because you’re too 1337 for such things. However,
you don’t want to break your entire StumpWM setup and start over. Thankfully, you don’t
have to. Before you get started, issue this command from the stumpwm directory:

$ git checkout -b experimental

You should now find yourself in a new branch, called experimental. To confirm this, type
git branch; there should be an asterisk next to the branch you’re currently viewing. At
any time, you can type git checkout master to return to your master branch, and at any
time you can have as many branches of the project as you like. If you want to create a new
branch based not on the master branch but on your experimental branch, for example, you’d
type:

$ git checkout -b new-experiment experimental

Chapter 16: Hacking 49

This will place you in a newly-created branch called “new-experiment” which should be
identical to your experimental branch as of the last commit (more on that soon). If you’re
actually typing out the directions, switch back to your old experimental branch like so:

$ git checkout experimental

Anyway, now that you have a new branch, create that new file with the long name, which
I’ll just call danger.lisp for brevity. Make whatever changes you want to it, and when
you’re done, tell git about your new file.

$ git add dangerous.lisp

Now, let’s pretend you’re done making changes. Tell git you’re done for now:

$ git commit -a

This will open up a prompt in your editor of choice for you to describe your changes. Try
to keep the first line short, and then add more explanation underneath (for an example, run
the command git log and take a look at some of the longer commit explanations). Save
that file and then do this:

$ git checkout master

$ ls

Then look for your new file. It’s not there! That’s because you’ve done all of your work
in another branch, which git is currently hiding from you so that you can “check out” the
branch called “master.” All is as it should be–your master repository is still safe.

$ git checkout experimental

Now, delete manual.lisp and stumpwm.texi. That’s right. Wipe them off the face of
the Earth, or at least off the hard drive of your computer. When you’re done, you don’t
have to tell git you’ve deleted them; it’ll figure it out on its own (though things may not
compile properly unless you edit Makefile.in and stumpwm.asd. Anyway, go ahead and
edit core.lisp and user.lisp. Really break ’em. Run free! When you’re done, do another
commit, as above, and give it a stupid title like “lolz i b0rked stUmpwm guys wTF!?!?!!111!”
Now try to compile. Just try. It won’t work. If it does, you’re some kind of savant or
something. Keep up the good work. If you’ve actually managed to break StumpWM like
you were supposed to, never fear! You have two options at this point.

One is to go back to the master branch (with another git checkout) and just delete your
experimental branch, like so:

$ git branch -D

The “-D” means to force a delete, even if the changes you’ve made aren’t available
elsewhere. A “-d” means to delete the branch if and only if you’ve merged the changes in
elsewhere.

The other option is to create patches for each of your commits so far, delete the branch,
and then apply any working/wanted patches in a new branch. Create your patches (after
committing) like so:

$ git format-patch -o patches origin

(Before doing that you can review your changes with git log origin..)

You can also use the format-patch command to create a patch of working code to send
in to the mailing list.

50 StumpWM Manual

A developer might ask you to try out something they’re working on. To fetch their master
branch, you’d do this:

$ git remote add -f -m master -t master foo git://bar.org/~foo/stumpwm

Here, “foo” is the shorthand name you’ll use to refer to that repository in the future. To
checkout a local copy of that repository, you’d then do

$ git checkout --track -b foo-master foo/master

Later you could use git pull foo to update while looking at that branch (and note that
git pull with no arguments, in the master branch, will update your StumpWM from the
official repository).

Finally, if you want to move your experimental changes into your master branch, you’d
checkout your master branch and run:

$ git merge experimental

If there are file conflicts, git diff will show you where they are; you have to fix them by
hand. When you’re done, do another

$ git commit -a

to finalize the changes to your master branch. You can then delete your experimental
branch. Alternately, you can wait until your changes (assuming you sent them in) make it
into the official repository before deleting your experimental branch.

16.3 Sending Patches

When sending patches to the mailing list for inclusion in StumpWM, there are a few
guidelines that will make everything go smoother.

• Make sure it applies clean to the main git repository

• Ensure that you aren’t introducing tabs, extra blank lines, or whitespace at the end of
lines.

• Ensure your patch doesn’t contain irrelevant indenting or reformatting changes.

• Try to make your patch address a single issue. If your patch changes two unrelated
issues, break them into two seperate patches that can stand on their own.

• Don’t send intermediate patches. When you’re working on a feature you might make
several commits to your local repository as you refine it and work out the bugs. When
it’s polished and ready to ship, send it as one patch! Sometimes it makes sense to send
it as multiple patches if each patch contains a discrete feature or bug fix that can stand
on its own. If one of your patches changes code that was added or modified in an earlier
patch, consider merging them together and sending them as one.

51

Command and Function Index

(
(setf getenv) . 31

A
abort-iresize . 23
add-hook . 43

B
balance-frames . 21
banish . 35
bind . 6

C
cancel-timer . 40
clear-window-marks . 17
clear-window-placement-rules 20
colon . 11
command-mode . 36
commands . 36
completing-read . 13
copy-last-message . 13
copy-unhandled-error . 36
curframe . 21
current-group . 28
current-screen . 29
current-window . 29

D
data-dir-file . 39
defcommand . 36
define-frame-preference . 19
define-key . 5
define-stumpwm-type . 37
define-window-slot . 19
defprogram-shortcut . 39
delete-window . 15
describe-function . 40
describe-key . 40
describe-variable . 40
dump-desktop-to-file . 23
dump-group-to-file . 23
dump-screen-to-file . 23
dump-window-placement-rules 20

E
echo . 11
echo-date . 35
echo-frame-windows . 22
echo-string . 13
echo-windows . 15
emacs . 35
eval-line . 35
exchange-direction . 22
exit-iresize . 23

F
fclear . 21
fnext . 21
forget . 20
fother . 21
fselect . 21
fullscreen . 16

G
get-x-selection . 33
getenv . 31
getsel . 36
gkill . 28
gmerge . 27
gmove . 28
gnew . 27
gnew-float . 27
gnewbg . 27
gnewbg-float . 27
gnext . 27
gnext-with-window . 27
gother . 27
gprev . 27
gprev-with-window . 27
gravity . 18
grename . 28
grouplist . 28
groups . 27
gselect . 27

H
hsplit . 21

I
info . 16
input-insert-char . 13
input-insert-string . 13
iresize . 23

52 StumpWM Manual

K
kbd . 5
keyboard-quit . 35
kill-window . 15

L
lastmsg . 36
list-window-properties . 36
load-module . 45
loadrc . 35

M
make-sparse-keymap . 6
mark . 17
message . 13
meta . 15
mode-line . 25
modifiers . 40
move-focus . 22
move-window . 22

N
next . 15
next-in-frame . 22

O
only . 21
other-in-frame . 22
other-window . 15

P
parse-color-string . 42
pathname-is-executable-p . 31
place-existing-windows . 24
prev . 15
prev-in-frame . 22
programs-in-path . 31
pull-hidden-next . 15
pull-hidden-other . 15
pull-hidden-previous . 15
pull-marked . 17
pull-window-by-number . 21
putsel . 36

Q
quit . 35

R
ratclick . 35
ratrelwarp . 35
ratwarp . 35
read-one-char . 13
read-one-line . 13
redirect-all-output . 40
redisplay . 16
refresh . 16
reload . 35
remember . 20
remove-hook . 43
remove-split . 21
renumber . 15
resize . 21
restart-hard . 35
restart-soft . 35
restarts-menu . 38
restore-from-file . 24
restore-window-placement-rules 20
run-commands . 36
run-or-pull . 38
run-or-raise . 38
run-shell-command . 31
run-with-timer . 40

S
screen-current-window . 29
select-window . 15
select-window-by-number . 15
set-bg-color . 11
set-border-color . 11
set-fg-color . 11
set-float-focus-color . 18
set-float-unfocus-color . 18
set-focus-color . 17
set-font . 11
set-maxsize-gravity . 18
set-msg-border-width . 11
set-normal-gravity . 18
set-prefix-key . 5
set-transient-gravity . 18
set-unfocus-color . 17
set-win-bg-color . 17
set-x-selection . 33
sibling . 21
snext . 29
sother . 29
sprev . 29

T
timer-p . 40
title . 15
toggle-mode-line . 25

Command and Function Index 53

U
uncolorify . 42
undefine-key . 5
update-color-map . 42

V
vgroups . 27
vsplit . 21

W
where-is . 40
window-send-string . 19, 35
windowlist . 16
with-data-file . 40
with-restarts-menu . 38

55

Variable Index

colors . 42
data-dir . 39
debug-level . 40
debug-stream . 40
default-package . 39
default-window-name . 19
deny-map-request . 18
deny-raise-request . 18
destroy-window-hook . 43
event-processing-hook . 44
focus-frame-hook . 43
focus-group-hook . 44
focus-window-hook . 43
group-format . 28
group-formatters . 28
groups-map . 6
initializing . 39
input-history-ignore-duplicates 13
input-map . 13
input-window-gravity . 12
internal-loop-hook . 43
key-press-hook . 44
maxsize-border-width . 17
message-hook . 44
message-window-gravity . 11
message-window-padding . 11
min-frame-height . 22
min-frame-width . 22
mode-line-background-color 26
mode-line-border-color . 26
mode-line-border-width . 26
mode-line-click-hook . 44

mode-line-foreground-color 26
mode-line-pad-x . 26
mode-line-pad-y . 26
mode-line-position . 26
mode-line-timeout . 26
new-frame-action . 22
new-frame-hook . 43
new-window-hook . 43
new-window-prefered-frame 16
normal-border-width . 17
place-window-hook . 43
resize-increment . 23
root-click-hook . 44
root-map . 6
run-or-raise-all-groups 38
run-or-raise-all-screens 38
screen-list . 29
screen-mode-line-format 25
shell-program . 31
start-hook . 43
startup-message . 39
suppress-abort-messages 39
suppress-deny-messages . 19
timeout-wait . 11
top-level-error-hook . 44
top-map . 6
transient-border-width . 17
urgent-window-hook . 44
window-border-style . 17
window-format . 16
window-name-source . 16

